采购材料磁参数检测仪1套,大幅提升紫外LED的IQE和器件发光功率

近期,中国科学技术大学微电子学院孙海定和龙世兵课题组利用蓝宝石衬底斜切角调控量子阱实现三维载流子束缚,突破了紫外LED发光性能。相关研究以Unambiguously
Enhanced Ultraviolet Luminescence of AlGaN Wavy Quantum Well Structures
Grown on Large Misoriented Sapphire
Substrate为题发表于《先进功能材料》。  紫外线虽然在太阳光中能量占比仅5%,但却广泛应用于人类生活。目前紫外光应用包括印刷固化、钱币防伪、皮肤病治疗、植物生长光照、破坏微生物如细菌、病毒等分子结构,因此广泛应用于空气杀菌、水体净化和固体表面除菌消毒等领域。传统的紫外光源一般是采用汞蒸气放电的激发态来产生紫外线,有着功耗高、发热量大、寿命短、反应慢、有安全隐患等诸多缺陷。新型的深紫外光源则采用发光二极管(light
emitting diode:
LED)发光原理,相对于传统的汞灯拥有诸多的优点。其中最为重要的优势在于其不含有毒汞元素。《水俣公约》的实施,预示2020年将全面禁止含有汞元素紫外灯的使用。因此,开发出一种全新的环保、高效紫外光源,成为摆在人们面前的一项重要挑战。  而基于宽禁带半导体材料(GaN,AlGaN)的深紫外发光二极管(deep
ultraviolet LED: DUV
LED)成为这一新应用的不二选择。这一全固态光源体系体积小、效率高,寿命长,仅仅是拇指盖大小的芯片,就可以发出比汞灯还要强的紫外光。其中的奥秘主要取决于III族氮化物这种直接带隙半导体材料:导带上的电子与价带上的空穴复合,从而产生光子。而光子的能量则取决于材料的禁带宽度,科学家们则可以通过调节AlGaN这种三元化合物中的元素组分,精密地实现不同波长的发光。然而,要想实现紫外LED的高效发光并不总是那么容易。研究者们发现,当电子和空穴复合时,并不总是一定产生光子,这一效率被称为内量子效率(internal
quantum efficiency:
IQE)。  在0.2和4度斜切角蓝宝石衬底上制备的深紫外LED光致发光光谱和器件示意图,有源区透射电子显微镜展示了高分辨多量子阱结构图,和输出功率的对比图。  孙海定和龙世兵课题组巧妙通过调控蓝宝石衬底的斜切角,大幅提升紫外LED的IQE和器件发光功率。课题组发现,当提高衬底的斜切角时,紫外LED内部的位错得到明显抑制,器件发光强度明显提高。当斜切角衬底达到4度时,器件荧光光谱的强度提升了一个数量级,而内量子效率也达到了破纪录的90%以上。  与传统紫外LED结构不同的是,这种新型结构内部的发光层——多层量子阱(MQW)内势阱和势垒的厚度并不是均匀的。借助于高分辨透射电子显微镜,研究人员得以在微观尺度分析仅仅只有几纳米的量子阱结构。研究表明,在衬底的台阶处,镓(Ga)原子会出现聚集现象,这导致了局部的能带变窄,并且随着薄膜的生长,富Ga和富Al的区域会一直延伸至DUV
LED的表面,并且在三维空间内出现扭曲、弯折,形成三维的多量子阱结构。研究者们称这一特殊的现象为:Al,Ga元素的相分离和载流子局域化现象。值得指出的是,在铟镓氮(InGaN)基的蓝光LED体系中,In由于和Ga并不100%互溶,导致材料内部出现富In和富Ga的区域,从而产生局域态,促进载流子的辐射复合。但在AlGaN材料体系中,Al和Ga的相分离却很少见到。而此工作的重要意义之一就在于人为调节材料的生长模式,促进相分离,并因此大大改善了器件的发光特性。  通过在4度斜切角衬底上优化外延生长调节,研究人员摸索到了一种最佳的DUVLED结构。该结构的载流子寿命超过了1.60
ns,而传统器件中这一数值一般都低于1ns。进一步测试芯片的发光功率,科研人员发现其紫外发光功率比传统基于0.2度斜切角衬底的器件强2倍之多,如图所示。这更加确信无疑地证明了,AlGaN材料可以实现有效的相分离和载流子局域化现象。除此之外,实验人员还通过理论计算模拟了AlGaN
多量子阱内部的相分离现象以及势阱、势垒厚度不均一性对发光强度和波长的影响,理论计算与实验都实现了十分吻合。  此项研究将会为高效率的全固态紫外光源的研发提供新的思路。这种思路无需昂贵的图形化衬底,也不需要复杂的外延生长工艺。而仅仅依靠衬底的斜切角的调控和外延生长参数的匹配和优化,就有望将紫外LED的发光特性提高到与蓝光LED相媲美的高度,为高功率深紫外LED的大规模应用奠定实验和理论基础。  孙海定为论文的第一作者和共同通讯作者。该项目联合中国科学院宁波材料科学与工程研究所研究员郭炜和叶继春、华中科技大学教授戴江南和陈长清、河北工业大学教授张紫辉、沙特阿卜杜拉国王科技大学教授Boon
Ooi和Iman
Roqan一起攻关完成。该研究工作得到国家自然科学基金委、中科院、中国科大等单位的支持。部分样品加工工艺在中国科大微纳研究与制造中心完成。 
标签: 半导体

水是地球演化的重要介质。名义上无水矿物中的水含量对岩石矿物的物理化学性质有深刻影响,是重要的地球化学指标,氧同位素对矿物本身以及水的来源也具有重要指示意义。这两个指标的同时测试,不仅能拓展仪器功能,使大型二次离子质谱(SIMS)仪器的使用效率提升一倍,还可避免因地质样品中广泛存在的不均匀性而导致的数据解耦,保证实验数据正确的科学解释。  SIMS虽被广泛应用于名义上无水矿物的水含量分析,但此前仅限于CAMECA
IMS
3-7f系列、NanoSIMS等小型仪器,因为水在真空中极难去除,只有极高的真空才能将水的背景值降低到10ppm以下。这类仪器腔体小,较易获得高真空,但无法获得高精度氧同位素信息。大型SIMS具有同时测量矿物水含量和氧同位素的能力,但腔体大,真空度难以跟小型SIMS相比。国际上以往利用大型高精度SIMS测试水含量的背景值高达40ppm,难以满足低水含量样品测试要求。  锆石是地球科学研究中应用最广泛的一种名义上无水矿物,可以进行U-Pb定年、Li-O-Hf同位素体系和Ti温度计等研究,并已形成专门的学科——锆石学。已有研究表明,结晶锆石中含有一定量的水,其水含量的多少对地球动力学过程研究有重要意义。锆石水含量的SIMS测试面临着仪器背景值高、锆石水含量标准物质缺乏等难题。若要成功实现同时测试锆石中水含量和氧同位素,标准样品的开发与降低仪器背景值两个方面缺一不可。  针对以上问题,中国科学院广州地球化学研究所同位素地球化学国家重点实验室研究员夏小平团队与中国科学技术大学、南京大学合作,利用CAMECA
IMS
1280-HR型二次离子质谱仪开展研究。经过大量的对比研究和条件实验,该研究找到一种熔点在90-110℃、Brinell硬度约为20的不释气锡铋合金,以取代在高真空环境中会释气破坏真空的环氧树脂制靶。得到的合金靶可以跟树脂靶一样打磨抛光,克服了铟靶等其他金属靶需要事先打磨抛光样品的缺陷,使小颗粒样品制样成为可能。该方法得到的样品靶面平整度可与传统的环氧树脂靶相媲美,保证了氧同位素的分析精度。该研究还自主研制了一套适用于SIMS样品室冷却系统的液氮自动加注装置,克服了仪器本身需要频繁加注液氮(约4小时一次)的不足,使仪器样品分析室可长期稳定地保持2×10-9
torr以下的高真空,从而在国际上首次将大型高精度SIMS测量水含量的背景值降到了10ppm以下。在此基础上,该研究将20颗宝石级的锆石颗粒,包含一些经常使用的U-Pb定年以及氧同位素测试标样,在中国科大地球与空间科学学院进行FTIR测试,验证其水含量的均一性,最终成功挑选出8颗水含量均一锆石碎片进行下一步的SIMS测试。  红外光谱测试结果显示,分析的锆石碎片只遭受了低程度的放射性破坏,均为非退变质锆石,水含量较为均一。经过多次重复SIMS测试,锆石颗粒16O1H/16O比值大部分的内部精度好于0.3‰,且外部精度好于5%(2SD),具有较高的精度以及重现性,部分内部精度交差的分析点呈现出离群特性,可能是样品内部的微小的富水包体影响所致。得到的锆石样品的氧同位素数据与常规的二次离子质谱测试氧同位素具有基本相当的分析精度,其内外精度均好于0.4‰(2SD)。FTIR测试得到的水含量与SIMS测试的16O1H/16O比值线性拟合建立了二次离子质谱测试锆石水含量的校正曲线,得到的拟合相关系数R2=0.996,显示两者之间具有极好的线性关系。  相关成果以“封面文章”形式发表于Journal
of Analytical atomic
spectrometry上,审稿人认为这是目前最好的名义上无水矿物水含量数据。该研究提出的方法还获授权国际发明专利一项“一种基于大型二次离子质谱对锆石中水含量和氧同位素进行同时分析的方法”(专利号201711103811.4)。

中国政府采购网发布了中国特种设备检测研究院2019年事业运行项目–材料磁参数检测仪公开招标公告,预算175.000000万元(人民币),采购材料磁参数检测仪1套。  具体采购详情如下:  项目名称:2019年事业运行项目–材料磁参数检测仪项目编号:GXTC-C-19500049  采购内容:  招标文件的发售时间及地点等:  预算金额:175.0
万元(人民币)  时间:2019年11月26日 11:27 至 2019年12月03日
16:30(双休日及法定节假日除外)地点:北京市海淀区四季青常青路5号院6号楼一层(鑫泰大厦院外铁轨旁)招标文件售价:¥800.0
元,本公告包含的招标文件售价总和招标文件获取方式:现场购买或电汇,投标人需提供营业执照复印件或扫描件。

相关文章

Leave a Comment.